A Simple Homotopy Algorithm for Compressive Sensing

نویسندگان

  • Lijun Zhang
  • Tianbao Yang
  • Rong Jin
  • Zhi-Hua Zhou
چکیده

In this paper, we consider the problem of recovering the s largest elements of an arbitrary vector from noisy measurements. Inspired by previous work, we develop an homotopy algorithm which solves the l1-regularized least square problem for a sequence of decreasing values of the regularization parameter. Compared to the previous method, our algorithm is more efficient in the sense it only updates the solution once for each intermediate problem, and more practical in the sense it has a simple stopping criterion by checking the sparsity of the intermediate solution. Theoretical analysis reveals that our method enjoys a linear convergence rate in reducing the recovery error. Furthermore, our guarantee for recovering the top s elements of the target vector is tighter than previous results, and that for recovering the target vector itself matches the state of the art in compressive sensing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Homotopy Proximal Mapping Algorithm for Compressive Sensing

In this paper, we present a novel yet simple homotopy proximal mapping algorithm for compressive sensing. The algorithm adopts a simple proximal mapping for l1 norm regularization at each iteration and gradually reduces the regularization parameter of the l1 norm. We prove a global linear convergence for the proposed homotopy proximal mapping (HPM) algorithm for solving compressive sensing unde...

متن کامل

A Simple Homotopy Proximal Mapping for Compressive Sensing

In this paper, we present a novel yet simple homotopy proximal mapping algorithm for compressive sensing. The algorithm adopts a simple proximal mapping of the l1 norm at each iteration and gradually reduces the regularization parameter for the l1 norm. We prove a global linear convergence of the proposed homotopy proximal mapping (HPM) algorithm for solving compressive sensing under three diff...

متن کامل

Streaming Measurements in Compressive Sensing: `1 Filtering

The central framework for signal recovery in compressive sensing is `1 norm minimization. In recent years, tremendous progress has been made on algorithms, typically based on some kind of gradient descent or Newton iterations, for performing `1 norm minimization. These algorithms, however, are for the most part “static”: they focus on finding the solution for a fixed set of measurements. In thi...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

An Homotopy Algorithm for the Lasso with Online Observations

It has been shown that the problem of `1-penalized least-square regression commonly referred to as the Lasso or Basis Pursuit DeNoising leads to solutions that are sparse and therefore achieves model selection. We propose in this paper RecLasso, an algorithm to solve the Lasso with online (sequential) observations. We introduce an optimization problem that allows us to compute an homotopy from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015